plot.permutationTest.Rd
Plot the results of calling functions that return an object of class
"permutationTest"
. Currently, the EnvStats functions that perform
permutation tests and produce objects of class "permutationTest"
are: oneSamplePermutationTest
,
twoSamplePermutationTestLocation
, and twoSamplePermutationTestProportion
.
The function plot.permutationTest
is automatically called by
plot
when given an object of class "permutationTest"
.
an object of class "permutationTest"
.
See permutationTest.object
for details.
a character string or numeric scalar determining the color of the histogram
used to display the permutation distribution. The default
value is hist.col="cyan"
. See the entry for col
in the
R help file for par
for more information.
a character string or numeric scalar determining the color of the line indicating
the value of the observed test statistic. The default value is
stat.col="black"
. See the entry for col
in the R help file for
par
for more information.
numeric scalar determining the width of the line indicating the value of the
observed test statistic. The default value is stat.lwd=3*par("cex")
.
See the entry for lwd
in the R help file for par
for
more information.
numeric scalar determining the line type used to display the value of the
observed test statistic. The default value is stat.lty=1
.
See the entry for lty
in the R help file for par
for
more information.
scalar indicating how many significant digits to print for the distribution
parameters. The default value is .Options$digits
(i.e., the current
setting of options("digits")
).
graphics parameters. See the help file for par
.
Produces a plot displaying the permutation distribution (exact=TRUE
) or a
sample of the permutation distribution (exact=FALSE
), and a line indicating
the observed value of the test statistic. The title in the plot includes
information on the data used, null hypothesis, and p-value.
The function plot.permutationTest
is a method for the generic function
plot
for the class "permutationTest"
(see permutationTest.object
). It can be invoked by calling
plot
and giving it an object of
class "permutationTest"
as the first argument, or by calling plot.permutationTest
directly, regardless of the class of the object given
as the first argument to plot.permutationTest
.
plot.permutationTest
invisibly returns the first argument, x
.
Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.
# Create an object of class "permutationTest", then print it and plot it.
# (Note: the call to set.seed() allows you to reproduce this example.)
#------------------------------------------------------------------------
set.seed(23)
dat <- rlogis(10, location = 7, scale = 2)
permutationTest.obj <- oneSamplePermutationTest(dat, mu = 5,
alternative = "greater", exact = TRUE)
mode(permutationTest.obj)
#> [1] "list"
#[1] "list"
class(permutationTest.obj)
#> [1] "permutationTest"
#[1] "permutationTest"
names(permutationTest.obj)
#> [1] "statistic" "parameters" "p.value"
#> [4] "estimate" "null.value" "alternative"
#> [7] "method" "estimation.method" "sample.size"
#> [10] "data.name" "bad.obs" "stat.dist"
#> [13] "exact"
# [1] "statistic" "parameters" "p.value"
# [4] "estimate" "null.value" "alternative"
# [7] "method" "estimation.method" "sample.size"
#[10] "data.name" "bad.obs" "stat.dist"
#[13] "exact"
#==========
# Print the results of the test
#------------------------------
permutationTest.obj
#>
#> Results of Hypothesis Test
#> --------------------------
#>
#> Null Hypothesis: Mean (Median) = 5
#>
#> Alternative Hypothesis: True Mean (Median) is greater than 5
#>
#> Test Name: One-Sample Permutation Test
#> (Exact)
#>
#> Estimated Parameter(s): Mean = 9.977294
#>
#> Data: dat
#>
#> Sample Size: 10
#>
#> Test Statistic: Sum(x - 5) = 49.77294
#>
#> P-value: 0.001953125
#>
#Results of Hypothesis Test
#--------------------------
#
#Null Hypothesis: Mean (Median) = 5
#
#Alternative Hypothesis: True Mean (Median) is greater than 5
#
#Test Name: One-Sample Permutation Test
# (Exact)
#
#Estimated Parameter(s): Mean = 9.977294
#
#Data: dat
#
#Sample Size: 10
#
#Test Statistic: Sum(x - 5) = 49.77294
#
#P-value: 0.001953125
#==========
# Plot the results of the test
#-----------------------------
dev.new()
plot(permutationTest.obj)
#==========
# Extract the test statistic
#---------------------------
permutationTest.obj$statistic
#> Sum(x - 5)
#> 49.77294
#Sum(x - 5)
# 49.77294
#==========
# Clean up
#---------
rm(permutationTest.obj)
graphics.off()