summaryFull.Rd
summaryFull
is a generic function used to produce a full complement of summary statistics.
The function invokes particular methods
which depend on the class
of
the first argument. The summary statistics include: sample size, number of missing values,
mean, median, trimmed mean, geometric mean, skew, kurtosis, min, max, range, 1st quartile, 3rd quartile,
standard deviation, geometric standard deviation, interquartile range, median absolute deviation, and
coefficient of variation.
summaryFull(object, ...)
# S3 method for class 'formula'
summaryFull(object, data = NULL, subset,
na.action = na.pass, ...)
# Default S3 method
summaryFull(object, group = NULL,
combine.groups = FALSE, drop.unused.levels = TRUE,
rm.group.na = TRUE, stats = NULL, trim = 0.1,
sd.method = "sqrt.unbiased", geo.sd.method = "sqrt.unbiased",
skew.list = list(), kurtosis.list = list(),
cv.list = list(), digits = max(3, getOption("digits") - 3),
digit.type = "signif", stats.in.rows = TRUE,
drop0trailing = TRUE, data.name = deparse(substitute(object)),
...)
# S3 method for class 'data.frame'
summaryFull(object, ...)
# S3 method for class 'matrix'
summaryFull(object, ...)
# S3 method for class 'list'
summaryFull(object, ...)
an object for which summary statistics are desired. In the default method,
the argument object
must be a numeric vector, a data frame, a matrix, or a list.
When object
is a data frame, all columns must be numeric.
When object
is a matrix, it must be a numeric matrix.
When object
is a list, all components must be numeric vectors.
In the formula method, a symbolic specification of the form y ~ g
can be given, indicating the observations in the vector y
are to be grouped
according to the levels of the factor g
(the form y ~ 1
indicates no grouping).
NA
s are allowed in the data.
when object
is a formula, data
specifies an optional data frame, list or
environment (or object coercible by as.data.frame
to a data frame) containing the
variables in the model. If not found in data
, the variables are taken from
environment(formula)
, typically the environment from which summaryFull
is called.
when object
is a formula, subset
specifies an optional vector specifying
a subset of observations to be used.
when object
is a formula, na.action
specifies a function which indicates
what should happen when the data contain NA
s. The default is na.pass
.
when object
is a numeric vector, group
is a factor or character vector
indicating which group each observation belongs to. When object
is a matrix or data frame
this argument is ignored and the columns define the groups. When object
is a formula,
this argument is ignored and the right-hand side of the formula specifies the grouping variable.
logical scalar indicating whether to show summary statistics for all groups combined.
The default value is FALSE
.
when drop.unused.levels=TRUE
, groups with no observations are dropped.
logical scalar indicating whether to remove missing values from the group
argument. By
default rm.group.na=TRUE
.
character vector indicating which statistics to compute. Possible elements of the character
vector include: "all"
(indicating to include all summary statistics),
"for.non.pos"
(only compute statistics that are meaningful for datasets with non-positive values),
"n"
(number of non-missing values), "n.miss"
(number of missing values),
"mean"
, "median"
, "trimmed.mean"
, "geo.mean"
, "skew"
, "kurtosis"
, "min"
, "max"
, "range"
, "1st.quart"
, "3rd.quart"
, "sd"
, "geo.sd"
, "iqr"
, "mad"
, "cv"
. The default value is stats="for.non.pos"
when object
contains
non-positive values (i.e., values \(\le 0\)), and stats="all"
when object
contains
only positive values.
fraction (between 0 and 0.5 inclusive) of values to be trimmed from each end of the ordered data
to compute the trimmed mean. The default value is trim=0.1
.
If trim=0.5
, this yields the median.
character string specifying what method to use to compute the sample standard deviation.
The possible values are "sqrt.ubiased"
(the square root of the unbiased estimate of variance;
the default), or "moments"
(the method of moments estimator).
character string specifying what method to use to compute the sample standard deviation of the
log-transformed observations prior to exponentiating this quantity. The possible values are
"sqrt.ubiased"
(the square root of the unbiased estimate of variance; the default), or
"moments"
(the method of moments estimator). See the help file for geoSD
for more information.
list of arguments to supply to the skewness
function. See the help file for
skewness
for more information. The default value is skew.list=list()
,
which results in using the default arguments to skewness
.
list of arguments to supply to the kurtosis
function. See the help file for
kurtosis
for more information. The default value is kurtosis.list=list()
,
which results in using the default arguments to kurtosis
.
list of arguments to supply to the cv
function. See the help file for cv
for more information. The default value is cv.list=list()
, which results in using the default
arguments to cv
.
integer indicating the number of digits to use for the summary statistics.
When digit.type="signif"
, digits
indicates the number of significant
digits. When digit.type="round"
, digits
indicates the number of
decimal places to round to. The default value is max(3, getOption("digits") - 3)
,
that is, the maximum of 3 versus the current setting of the "digits"
component
of .Options
minus 3.
character string indicating whether the digits
argument refers to significant digits
(digit.type="signif"
, the default), or how many decimal places to round to
(digit.type="round"
).
logical scalar indicating whether to show the summary statistics in the rows or columns of the
output. The default is stats.in.rows=TRUE
.
logical scalar indicating whether to drop trailing 0's when printing the summary statistics.
The value of this argument is added as an attribute to the returned list and is used by the
print.summaryStats
function. The default value is TRUE
.
character string indicating the name of the data used for the summary statistics.
additional arguments affecting the summary statistics produced.
The function summaryFull
returns summary statistics that are useful to describe various
characteristics of one or more variables. It is an extended version of the built-in R function
summary
specifically for non-factor numeric data. The table below shows what
statistics are computed and what functions are called by summaryFull
to compute these statistics.
The object returned by summaryFull
is useful for printing or report purposes. You may also
use the functions that summaryFull
calls (see table below) to compute summary statistics to
be used by other functions.
See the help files for the functions listed in the table below for more information on these summary statistics.
Summary Statistic | Function Used |
Mean | mean |
Median | median |
Trimmed Mean | mean with trim argument |
Geometric Mean | geoMean |
Skew | skewness |
Kurtosis | kurtosis |
Min | min |
Max | max |
Range | range and diff |
1st Quartile | quantile |
3rd Quartile | quantile |
Standard Deviation | sd |
Geometric Standard Deviation | geoSD |
Interquartile Range | iqr |
Median Absolute Deviation | mad |
Coefficient of Variation | cv |
an object of class "summaryStats"
(see summaryStats.object
.
Objects of class "summaryStats"
are numeric matrices that contain the
summary statisics produced by a call to summaryStats
or summaryFull
.
These objects have a special printing method that by default removes
trailing zeros for sample size entries and prints blanks for statistics that are
normally displayed as NA
(see print.summaryStats
).
Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers, Second Edition. Lewis Publishers, Boca Raton, FL.
Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, NY.
Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier, New York, NY.
Leidel, N.A., K.A. Busch, and J.R. Lynch. (1977). Occupational Exposure Sampling Strategy Manual. U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, January, 1977, pp.102-103.
Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca Raton, FL.
Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.
Zar, J.H. (2010). Biostatistical Analysis, Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.
# Generate 20 observations from a lognormal distribution with
# parameters mean=10 and cv=1, and compute the summary statistics.
# (Note: the call to set.seed simply allows you to reproduce this
# example.)
set.seed(250)
dat <- rlnormAlt(20, mean=10, cv=1)
summary(dat)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 2.608 4.995 6.235 7.490 9.295 15.437
# Min. 1st Qu. Median Mean 3rd Qu. Max.
#2.608 4.995 6.235 7.490 9.295 15.440
summaryFull(dat)
#> dat
#> N 20
#> Mean 7.49
#> Median 6.235
#> 10% Trimmed Mean 7.125
#> Geometric Mean 6.674
#> Skew 0.9877
#> Kurtosis -0.03539
#> Min 2.608
#> Max 15.44
#> Range 12.83
#> 1st Quartile 4.995
#> 3rd Quartile 9.295
#> Standard Deviation 3.803
#> Geometric Standard Deviation 1.634
#> Interquartile Range 4.3
#> Median Absolute Deviation 2.607
#> Coefficient of Variation 0.5078
# dat
#N 20
#Mean 7.49
#Median 6.235
#10% Trimmed Mean 7.125
#Geometric Mean 6.674
#Skew 0.9877
#Kurtosis -0.03539
#Min 2.608
#Max 15.44
#Range 12.83
#1st Quartile 4.995
#3rd Quartile 9.295
#Standard Deviation 3.803
#Geometric Standard Deviation 1.634
#Interquartile Range 4.3
#Median Absolute Deviation 2.607
#Coefficient of Variation 0.5078
#----------
# Compare summary statistics for normal and lognormal data:
log.dat <- log(dat)
summaryFull(list(dat = dat, log.dat = log.dat))
#> dat log.dat
#> N 20 20
#> Mean 7.49 1.898
#> Median 6.235 1.83
#> 10% Trimmed Mean 7.125 1.902
#> Geometric Mean 6.674 1.835
#> Skew 0.9877 0.1319
#> Kurtosis -0.03539 -0.4288
#> Min 2.608 0.9587
#> Max 15.44 2.737
#> Range 12.83 1.778
#> 1st Quartile 4.995 1.607
#> 3rd Quartile 9.295 2.227
#> Standard Deviation 3.803 0.4913
#> Geometric Standard Deviation 1.634 1.315
#> Interquartile Range 4.3 0.62
#> Median Absolute Deviation 2.607 0.4915
#> Coefficient of Variation 0.5078 0.2588
# dat log.dat
#N 20 20
#Mean 7.49 1.898
#Median 6.235 1.83
#10% Trimmed Mean 7.125 1.902
#Geometric Mean 6.674 1.835
#Skew 0.9877 0.1319
#Kurtosis -0.03539 -0.4288
#Min 2.608 0.9587
#Max 15.44 2.737
#Range 12.83 1.778
#1st Quartile 4.995 1.607
#3rd Quartile 9.295 2.227
#Standard Deviation 3.803 0.4913
#Geometric Standard Deviation 1.634 1.315
#Interquartile Range 4.3 0.62
#Median Absolute Deviation 2.607 0.4915
#Coefficient of Variation 0.5078 0.2588
# Clean up
rm(dat, log.dat)
#--------------------------------------------------------------------
# Compute summary statistics for 10 observations from a normal
# distribution with parameters mean=0 and sd=1. Note that the
# geometric mean and geometric standard deviation are not computed
# since some of the observations are non-positive.
set.seed(287)
dat <- rnorm(10)
summaryFull(dat)
#> dat
#> N 10
#> Mean 0.07406
#> Median 0.1095
#> 10% Trimmed Mean 0.1051
#> Skew -0.1646
#> Kurtosis -0.7135
#> Min -1.549
#> Max 1.449
#> Range 2.998
#> 1st Quartile -0.5834
#> 3rd Quartile 0.6966
#> Standard Deviation 0.9412
#> Interquartile Range 1.28
#> Median Absolute Deviation 1.05
# dat
#N 10
#Mean 0.07406
#Median 0.1095
#10% Trimmed Mean 0.1051
#Skew -0.1646
#Kurtosis -0.7135
#Min -1.549
#Max 1.449
#Range 2.998
#1st Quartile -0.5834
#3rd Quartile 0.6966
#Standard Deviation 0.9412
#Interquartile Range 1.28
#Median Absolute Deviation 1.05
# Clean up
rm(dat)
#--------------------------------------------------------------------
# Compute summary statistics for the TcCB data given in USEPA (1994b)
# (the data are stored in EPA.94b.tccb.df). Arbitrarily set the one
# censored observation to the censoring level. Group by the variable
# Area.
summaryFull(TcCB ~ Area, data = EPA.94b.tccb.df)
#> Cleanup Reference
#> N 77 47
#> Mean 3.915 0.5985
#> Median 0.43 0.54
#> 10% Trimmed Mean 0.6846 0.5728
#> Geometric Mean 0.5784 0.5382
#> Skew 7.717 0.9019
#> Kurtosis 62.67 0.132
#> Min 0.09 0.22
#> Max 168.6 1.33
#> Range 168.5 1.11
#> 1st Quartile 0.23 0.39
#> 3rd Quartile 1.1 0.75
#> Standard Deviation 20.02 0.2836
#> Geometric Standard Deviation 3.898 1.597
#> Interquartile Range 0.87 0.36
#> Median Absolute Deviation 0.3558 0.2669
#> Coefficient of Variation 5.112 0.4739
# Cleanup Reference
#N 77 47
#Mean 3.915 0.5985
#Median 0.43 0.54
#10% Trimmed Mean 0.6846 0.5728
#Geometric Mean 0.5784 0.5382
#Skew 7.717 0.9019
#Kurtosis 62.67 0.132
#Min 0.09 0.22
#Max 168.6 1.33
#Range 168.5 1.11
#1st Quartile 0.23 0.39
#3rd Quartile 1.1 0.75
#Standard Deviation 20.02 0.2836
#Geometric Standard Deviation 3.898 1.597
#Interquartile Range 0.87 0.36
#Median Absolute Deviation 0.3558 0.2669
#Coefficient of Variation 5.112 0.4739